
Linear Servomotors

SGLTW

(With T-type iron core)

Model Designations

Moving Coil

S

G Linear∑Series

Т

L

Α

170

Α

P

1st digit	Servomotor	Туре
	,	

Code	Specifications
Т	T-type iron core

2nd digit	Moving Coil/Magnetic Way
Code	Specifications

Code	Specifications
W	Moving Coil

3rd+4th digits Magnet Height

5th digit Voltage

Code	Specifications
Α	200 VAC
D	400 VAC

6th+7th+8th digits Length of Moving Coil

9th digit Design Revision Order A, B...

H: High-efficiency Type

10th digit Hall Sensor

Code	Specifications
Р	With hall sensor
Blank	Without hall sensor

11th digit Connector for Main Circuit Cable

Code	Specification	Applicable Model
Blank	Connector by Tyco Electronics AMP K.K.	SGLTW-20A -35A -50A -50A
	MS connector	SGLTW-40 B B
D	Connector by Interconnectron GmbH	SGLTW-35D H

Magnetic Way

S Т 324 G 20

Linear∑Series Linear Servomotor

1st digit Servomotor Type (Same as that of the moving coil)

2nd digit Moving Coil/Magnetic Way

Code	Specifications
М	Magnetic Way

3rd+4th digits Magnet Height

5th+6th+7th digits Length of Magnetic Way

8th digit Design Revision Order A, B...

H: High-efficiency Type

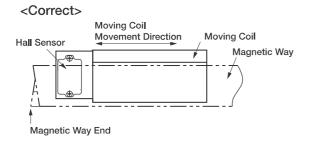
ι	9th digit	Option			
	Code	Sno			

	Code	Specifications	Applicable Model
y	Blank	Standard	All models
	С	With magnet cover	Models with core
	Υ	With base and magnet cover	SGLTM-20, -35*, -40, -80

^{*:} Except for SGLTM-35 H (high-efficiency type).

Features

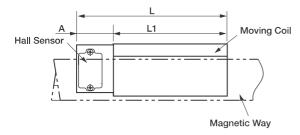
- Direct-feed mechanism for high-speed and highprecision positioning.
- Yaskawa's unique construction principles of the TW linear motors negate the effects of the magnetic attraction force between the relative motor members.
- Lack of magnetic attraction helps to extend the life of the linear motion guides and to minimize operation noise.
- Very little cogging.


Application Examples

- Feeders and loaders
- Mounters
- Machine tools

Precautions on Moving Coil with Hall Sensor

When using a moving coil with a hall sensor, the magnetic way must completely cover the bottom of the hall sensor. Refer to the example showing the correct installation.


When determining the length of the moving coil's stroke or the length of the magnetic way, consider the total length of the moving coil and the hall sensor unit. Refer to the following table.

<Incorrect>

The total length of moving coil with hall sensor

Moving Coil Model	Length of	Length of Hall Sensor Unit	Total Length		
SGLTW-	L1 (mm)	A (mm)	L (mm)		
20A170AP	170		204		
20A320AP	315	34	349		
20A460AP	460		494		
35A170AP□	170		204		
35A320AP□	315	34	349		
35A460AP	460		494		
35□170HP□	170	34	204		
35□320HP□	315	34	349		
50□170HP□	170	34	204		
50□320HP□	315	34	349		
40A400AP	395	26	421		
40A600AP	585	36	621		
80A400AP	395	26	421		
80A600AP	585	36	621		
40□400BP□	395	26	421		
40□600BP□	575	20	601		
80□400BP□	395	26	421		
80□600BP□	575	20	601		

Ratings and Specifications

Time Rating: Continuous

Insulation Resistance: 500 VDC, 10 M Ω min.

Ambient Temperature: 0 to 40°C Excitation: Permanent magnet

Withstand Voltage: 1500 VAC for one minute

Enclosure: Self-cooled

Ambient Humidity: 20% to 80% (no condensation)
Allowable Winding Temperature: 130°C (Thermal class B)

200-V Class

		Standard Type High-efficiency Type											ре		
Linear Servomotor Model SGLTW-			20A			35A		40A		80A		35A		50A	
3GLI W		170A	320A	460A	170A	320A	460A	400B	600B	400B	600B	170H	320H	170H	320H
Peak Speed	m/s	5	5	5	5	5	5	3.1	3.1	2.5	2.5	4.8	4.8	3.2	3.1
Rated Force	N	130	250	380	220	440	670	670	1000	1300	2000	300	600	450	900
Rated Current	Arms	2.3	4.4	6.7	3.5	7	10.7	7.3	10.9	11.1	17.1	5.1	10.1	4.9	9.8
Peak Force	N	380	760	1140	660	1320	2000	2600	4000	5000	7500	600	1200	900	1800
Peak Current	Arms	7.7	15.4	23.2	12.1	24.2	36.7	39.4	60.6	57.9	86.9	11.9	23.9	11.5	22.9
Moving Coil Mass	kg	2.5	4.6	6.7	3.7	6.8	10	15	23	24	35	4.9	8.8	6	11
Force Constant	N/Arms	61	61	61	67.5	67.5	67.5	99.1	99.1	126	126	64	64	98.5	98.5
BEMF Constant	V/(m/s)	20.3	20.3	20.3	22.5	22.5	22.5	33	33	42	42	21.3	21.3	32.8	32.8
Motor Constant	N/√W	18.7	26.5	32.3	26.7	37.5	46.4	61.4	75.2	94.7	116	37.4	52.9	50.3	71.1
Electrical Time Constant	ms	5.9	5.9	5.9	6.9	6.8	7	15.2	15.2	17	17	15.1	15.1	16.5	16.5
Mechanical Time Constant	ms	7.5	6.5	6.4	5.2	4.8	4.6	4	4	3	3	3.3	3.3	2.8	2.8
Thermal Resistance (With Heat Sink)	K/W	1.01	0.49	0.38	0.76	0.44	0.32	0.24	0.2	0.22	0.18	0.76	0.4	0.61	0.3
Thermal Resistance (Without Heat Sink)	K/W	1.82	1.11	0.74	1.26	0.95	0.61	0.57	0.4	0.47	0.33	1.26	0.83	0.97	0.8
Magnetic Attraction*1	N	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Magnetic Attraction (on one side)*2	N	800	1590	2380	1400	2780	4170	3950	5890	7650	11400	1400	2780	2000	3980
Applicable SERVOPACK	SGDV-	3R8A	7R6A	120A	5R5A	120A	180A	180A	330A	330A	550A	5R5A	120A	5R5A	120A

^{*1:} The unbalanced magnetic gap resulted from the moving coil installation condition causes a magnetic attraction on the moving coil.

Heat Sink Size 254 mm×254 mm×25 mm : SGLTW-20A170A,-35A170A

400 mm×500 mm×40 mm : SGLTW-20A320A,-20A460A,-35A170H,-35A320A,-35A320H,-35A460A,-50A170H

 $609~\text{mm} \times 762~\text{mm} \times 50~\text{mm}: \text{SGLTW-40A400B,-40A600B,-50A320H,-80A400B,-80A600B}$

400-V Class

Linear Servomotor Model			Standard Type			High-efficiency Type			
		40	40D 80D		35D		50D		
SGLI WY		400B	600B	400B	600B	170H	320H	170H	320H
Peak Speed	m/s	3.1	3.1	3.1	3.1	5	5	4	4
Rated Force*	N	670	1000	1300	2000	300	600	450	900
Rated Current*	Arms	3.7	5.5	7.2	11.1	3.2	6.5	3.2	6.3
Peak Force*	N	2600	4000	5000	7500	600	1200	900	1800
Peak Current*	Arms	20.7	30.6	37.6	56.4	7.7	15.5	7.4	14.8
Moving Coil Mass	kg	15	23	24	35	4.7	8.8	6	11
Force Constant	N/Arms	196.1	196.1	194.4	194.4	99.6	99.6	153.3	153.3
BEMF Constant	V/(m/s)	65.4	65.4	64.8	64.8	33.2	33.2	51.1	51.1
Motor Constant	N/√W	59.6	73	85.9	105.2	36.3	51.4	48.9	69.1
Electrical Time Constant	ms	14.3	14.4	15.6	15.6	14.3	14.4	15.6	15.6
Mechanical Time Constant	ms	4.3	4.2	3.2	3.2	3.5	3.3	2.5	2.5
Thermal Resistance (With Heat Sink)	K/W	0.24	0.2	0.22	0.18	0.76	0.4	0.61	0.3
Thermal Resistance (Without Heat Sink)	K/W	0.57	0.4	0.47	0.33	1.26	0.83	0.97	0.8
Magnetic Attraction*1	N	0	0	0	0	0	0	0	0
Magnetic Attraction (on one side)*2	N	3950	5890	7650	11400	1400	2780	2000	3980
Applicable SERVOPACK	SGDV-	120D	170D	170D	260D	3R5D	8R4D	3R5D	8R4D

^{*1:} The unbalanced magnetic gap resulted from the moving coil installation condition causes a magnetic attraction on the moving coil.

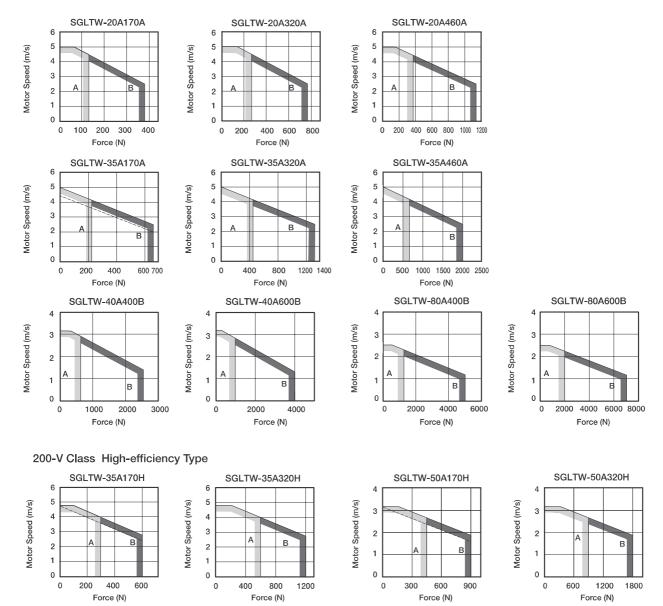
Heat Sink Size 400 mm×500 mm×40 mm : SGLTW-35D170H,-35D320H,-50D170H

609 mm×762 mm×50 mm : SGLTW-40D400B,-40D600B,-50D320H,-80D400B,-80D600B

^{*2:} The value indicates the magnetic attraction generated on one side of the magnetic way.

Notes: 1 The items marked with an * and Force and Speed Characteristics (on the next page) are the values at a motor winding temperature of 100°C during operation in combination with a SERVOPACK. The others are at 20°C.

² The above specifications show the values under the cooling condition when a heat sink (aluminum board) listed in the following table is mounted on the moving coil.

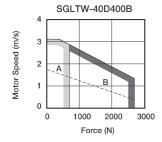

^{*2:} The value indicates the magnetic attraction generated on one side of the magnetic way.

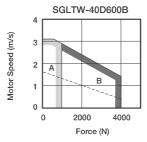
Notes: 1 The items marked with an * and Force and Speed Characteristics (on page 157) are the values at a motor winding temperature of 100°C during operation in combination with a SERVOPACK. The others are at 20°C.

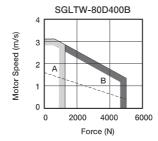
² The above specifications show the values under the cooling condition when a heat sink (aluminum board) listed in the following table is mounted on the moving coil.

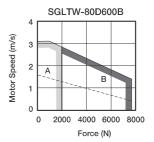
Ratings and Specifications

● Force and Speed Characteristics A: Continuous Duty Zone B: Intermittent Duty Zone 200-V Class Standard Type

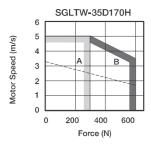

Notes:1 The characteristics of the intermittent duty zone differ depending on the supply voltages. The solid and dotted lines of the intermittent duty zone indicate the

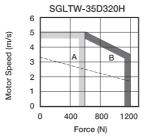

- characteristics when a servomotor runs with the following combinations: The solid line: With a three-phase 200 V SERVOPACK
- The dotted line: With a single-phase 200 V SERVOPACK
- 2 When the effective force is within the rated force, the servomotor can be used within the intermittent duty zone.

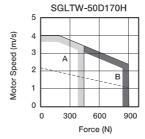

Ratings and Specifications

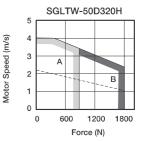

 $\bullet \ \, \text{Force and Speed Characteristics (cont'd)} \ \, \boxed{\mathbb{A}} \ \, : \text{Continuous Duty Zone} \ \, \boxed{\mathbb{B}} \ \, : \text{Intermittent Duty Zone} \\$

400-V Class Standard Type









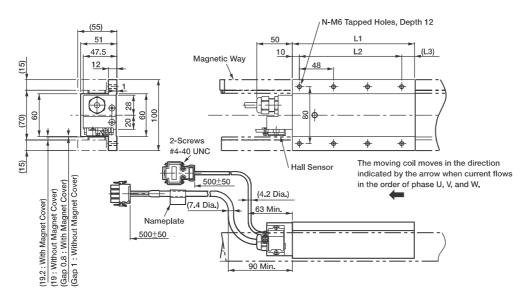
400-V Class High-efficiency Type

Notes:1 The characteristics of the intermittent duty zone differ depending on the supply voltages. The solid and dotted lines of the intermittent duty zone indicate the characteristics when a servomotor runs with the following combinations:

- ·The solid line: With a three-phase 400 V SERVOPACK
- ·The dotted line: With a three-phase 200 V SERVOPACK
- 2 When using the servomotor with a three-phase 200-V input power supply, a different serial converter unit is required. For details, contact your Yaskawa representative.
- 3 When the effective force is within the rated force, the servomotor can be used within the intermittent duty zone.

Mechanical Specifications

(1) Impact Resistance


·Impact acceleration: 196 m/s² ·Impact occurrences: twice

(2) Vibration Resistance

The linear servomotors will withstand the following vibration acceleration in three directions: Vertical, side to side, and front to back.

·Vibration acceleration: 49 m/s²

- (1) Standard Type SGLTW-20
- Moving Coil: SGLTW-20A \(\subseteq \text{A} \subsete \text{ (With a connector by Tyco Electronics AMP K.K.)} \)

Moving Coil Model SGLTW-	L1	L2	(L3)	N	Approx. Mass kg
20A170A□	170	144 (48×3)	(16)	8	2.5
20A320A□	315	288 (48×6)	(17)	14	4.6
20A460A□	460	432 (48×9)	(18)	20	6.7

Hall Sensor Connector Specifications

Pin Connector 17JE-23090-02 (D8C) by DDK Ltd.

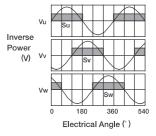
The Mating Connector Socket Connector: 17JE-13090-02 (D8C) Stud: 17L-002C or 17L-002C1

Pin No.	Signal			
1	+5VDC			
2	Phase U			
3	Phase V			
4	Phase W			
5	0V			
6	Not used			
7	Not used			
8	Not used			
9	Not used			

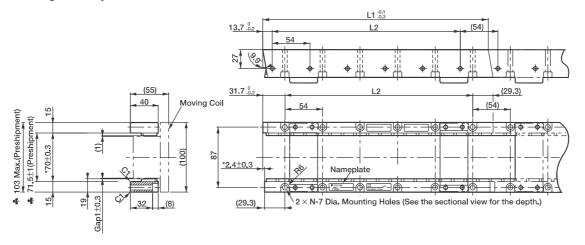
Line

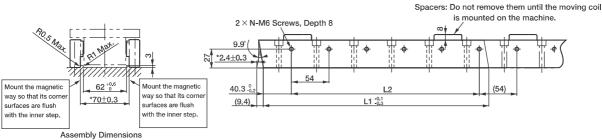
Plug: 350779-1 Pin : 350218-3 or 350547-3 (No.1 to 3) 350669-1 (No.4) by Tyco Electronics AMP K.K.

The Mating Connector


Cap : 350780-1 Socket: 350536-3 or 350550-3

ai Servoinotoi	
nector Specifications	

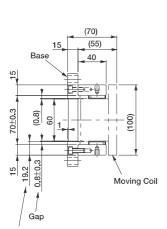

Pin No.	Signal	Wire Color
1	Phase U	Red
2	Phase V	White
3	Phase W	Black
4	Ground	Green

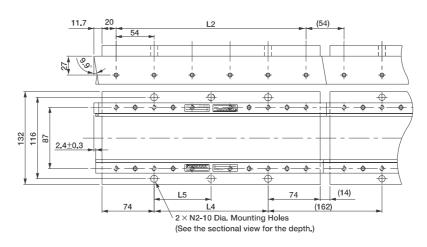

Hall Sensor Output Signals

When the moving coil moves in the direction indicated by the arrow in the figure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the figure below.

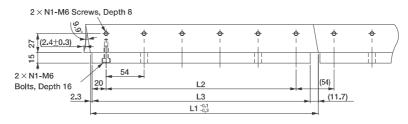
Magnetic Way : SGLTM-20□□□A□

Notes: 1 Two magnetic ways for both ends of moving coil make one set. Spacers are mounted on magnetic ways for safety during transportation. Do not remove the spacers until the moving coil is mounted on a machine.


- 2 If you have a pacemaker or any other electronic medical device, do not go near the magnetic way of the linear servomotor.
- 3 Two magnetic ways in a set can be connected to each other.
- 4 The dimensions marked with an * are the dimensions between the magnetic ways. Be sure to follow exactly the dimensions specified in the figure above. Mount magnetic ways as shown in Assembly Dimensions. The values with a 4 are the dimensions at preshipment.
- 5 Use socket headed screws of strength class 10.9 minimum for magnetic way mounting screws. Do not use stainless steel screws.

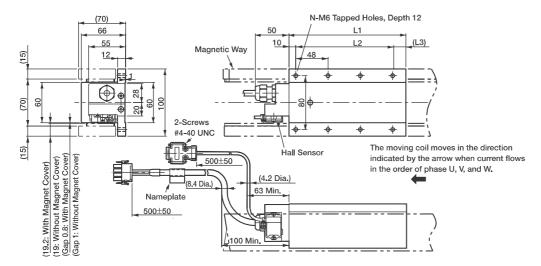

Magnetic Way Model SGLTM-	L1 ^{-0.1}	L2	N	Approx. Mass kg
20324A□	324	270 (54×5)	6	3.4
20540A	540	486 (54×9)	10	5.7
20756A□	756	702 (54×13)	14	7.9

SGLTW (With T-type iron core)


External Dimensions Units: mm

Magnetic Way with Base: SGLTM-20□□□AY

Includes a 0.2 thick magnet cover.


Notes: 1 If you have a pacemaker or any other electronic medical device, do not go near the magnetic way of the linear servomotor.

- 2 Two magnetic ways in a set can be connected to each other.
- 3 The characteristics of the magnetic way with base are the same as of the magnetic way without base (SGLTM-20 \Bigcup A).

Magnetic Way Model SGLTM-	L1	L2	L3	L4	L5	N1	N2	Approx. Mass kg
20324AY	324	270	310	162	162	6	2	5.1
20540AY	540	486	526	378	189	10	3	8.5
20756AY	756	702	742	594	198	14	4	12

(2) Standard Type SGLTW-35

● Moving Coil: SGLTW-35A□□□A□ (With a connector by Tyco Electronics AMP K.K.)

Hall Sensor Connector Specifications

Pin Connector 17JE-23090-02 (D8C) by DDK Ltd.

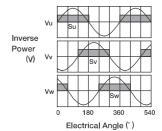
The Mating Connector Socket Connector: 17JE-13090-02 (D8C) 17L-002C1

Pin No.	Signal			
1	+5VDC			
2	Phase U			
3	Phase V			
4	Phase W			
5	0V			
6	Not used			
7	Not used			
8	Not used			
a	Not used			

Linear Servomotor Connector Specifications

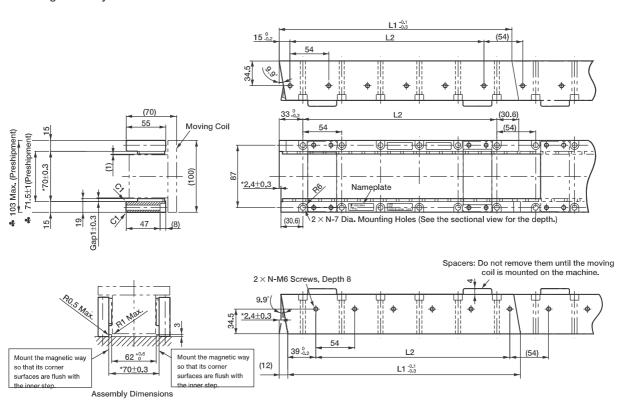
n		
眅	J204	淜
_		

Plug: 350779-1 Pin : 350218-3 or 350547-3 (No.1 to 3) 350654-1 350669-1 (No.4) by Tyco Electronics AMP K.K.


The Mating Connector

: 350780-1 Сар Socket: 350536-3 or

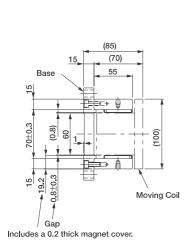
Pin No.	Signal	Wire Color
1	Phase U	Red
2	Phase V	White
3	Phase W	Black
4	Ground	Green

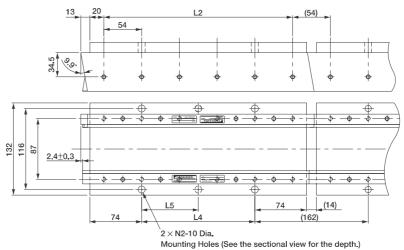

Hall Sensor Output Signals

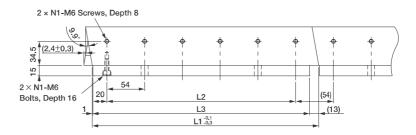
When the moving coil moves in the direction indicated by the arrow in the figure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the figure

Moving Coil Model SGLTW-	L1	L2	(L3)	N	Approx. Mass kg
35A170A□	170	144 (48×3)	(16)	8	3.7
35A320A□	315	288 (48×6)	(17)	14	6.8
35A460A□	460	432 (48×9)	(18)	20	10

Magnetic Way: SGLTM-35□□□A□

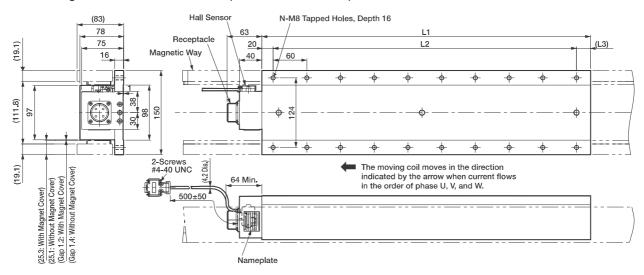



Notes: 1 Two magnetic ways for both ends of moving coil make one set, Spacers are mounted on magnetic ways for safety during transportation. Do not remove the spacers until the moving coil is mounted on a machine.


- 2 If you have a pacemaker or any other electronic medical device, do not go near the magnetic way of the linear servomotor.
- 3 Two magnetic ways in a set can be connected to each other.
- 4 The dimensions marked with an * are the dimensions between the magnetic ways. Be sure to follow exactly the dimensions specified in the figure above. Mount magnetic ways as shown in Assembly Dimensions. The values with a 4 are the dimensions at preshipment.
- 5 Use socket headed screws of strength class 10.9 minimum for magnetic way mounting screws. Do not use stainless steel screws.

Magnetic Way Model SGLTM-	L1 ^{-0.1} -0.3	L2	N	Approx. Mass kg
35324A	324	270 (54×5)	6	4.8
35540A□	540	486 (54×9)	10	8
35756A□	756	702 (54×13)	14	11

Magnetic Way with Base: SGLTM-35□□□AY


Notes: 1 If you have a pacemaker or any other electronic medical device, do not go near the magnetic way of the linear servomotor,

- 2 Two magnetic ways in a set can be connected to each other.
 3 The characteristics of the magnetic way with base are the same as of the magnetic way without base (SGLTM-35 A).

Magnetic Way Model SGLTM-	L1	L2	L3	L4	L5	N1	N2	Approx. Mass kg
35324AY	324	270	310	162	162	6	2	6.4
35540AY	540	486	526	378	189	10	3	11
35756AY	756	702	742	594	198	14	4	15

(3) Standard Type SGLTW-40

Moving Coil: SGLTW-40 □ □ □ B □ (With an MS connector)

Hall Sensor Connector Specifications

Pin Connector: 17JE-23090-02 (D8C) by DDK Ltd.

The Mating Connector

Socket Connector: 17JE-13090-02 (D8C) Stud: 17L-002C or 17L-002C1

Pin No.	Signal
1	+5VDC
2	Phase U
3	Phase V
4	Phase W
5	0V
6	Not used
7	Not used
8	Not used
9	Not used

Linear Servomotor Connector Specifications

Receptacle type: MS3102A-22-22P ②by DDK Ltd.

The Mating Connector

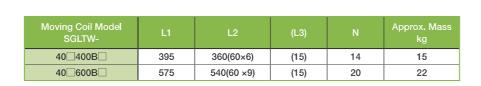
L-shaped plug type : MS3108B22-22S Straight plug type : MS3106B22-22S Cable clamp type : MS3057-12A

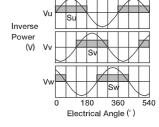
Hall Sensor Output Signals

Phase U

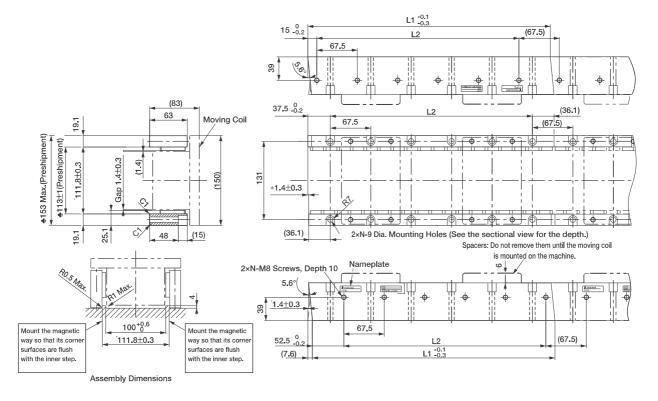
Phase V

Phase W


Ground

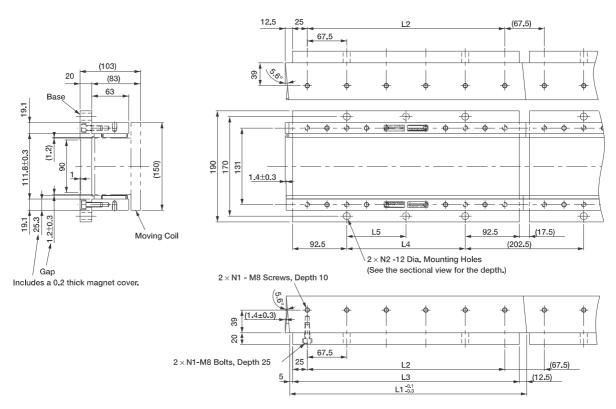

В

С


D

When the moving coil moves in the direction indicated by the arrow in the figure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, W becomes as shown in the figure below.

Magnetic Way : SGLTM-40□□□A□

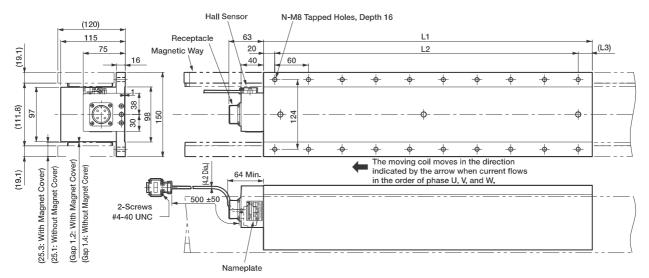


Notes: 1 Two magnetic ways for both ends of moving coil make one set. Spacers are mounted on magnetic ways for safety during transportation. Do not remove the spacers until the moving coil is mounted on a machine.

- 2 If you have a pacemaker or any other electronic medical device, do not go near the magnetic way of the linear servomotor.
- 3 Two magnetic ways in a set can be connected to each other.
- 4 The dimensions marked with an * are the dimensions between the magnetic ways. Be sure to follow exactly the dimensions specified in the figure above. Mount magnetic ways as shown in Assembly Dimensions. The values with a * are the dimensions at preshipment.
- 5 Use socket headed screws of strength class 10.9 minimum for magnetic way mounting screws. Do not use stainless steel screws.

Magnetic Way Model SGLTM-	L1 ^{-0.1}	L2	N	Approx. Mass kg
40405A□	405	337.5 (67.5×5)	6	9
40675A□	675	607.5 (67.5×9)	10	15
40945A□	945	877.5 (67.5×13)	14	21

Magnetic Way with Base: SGLTM-40□□□AY



- Notes: 1 If you have a pacemaker or any other electronic medical device, do not go near the magnetic way of the linear servomotor.
 - 2 Two magnetic ways in a set can be connected to each other.
 - 3 The characteristics of the magnetic way with base are the same as of the magnetic way without base (SGLTM-40 \Backslash B).

Magnetic Way Model SGLTM-	L1	L2	L3	L4	L5	N1	N2	Approx. Mass kg
40405AY	405	337.5	387.5	202.5	202.5	6	2	13
40675AY	675	607.5	657.5	472.5	236.25	10	3	21
40945AY	945	877.5	927.5	742.5	247.5	14	4	30

(4) Standard Type SGLTW-80

● Moving Coil: SGLTW-80□□□□B□ (With an MS connector)

Hall Sensor Connector Specifications

Pin Connector: 17JE-23090-02 (D8C) by DDK Ltd.

The Mating Connector

Socket Connector: 17JE-13090-02 (D8C) Stud: 17L-002C or 17L-002C1

Pin No.	Signal
1	+5VDC
2	Phase U
3	Phase V
4	Phase W
5	0V
6	Not used
7	Not used
8	Not used
9	Not used

Linear Servomotor Connector Specifications

Receptacle type: MS3102A-22-22P

by DDK Ltd.

Α

В

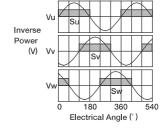
С

D

Phase U

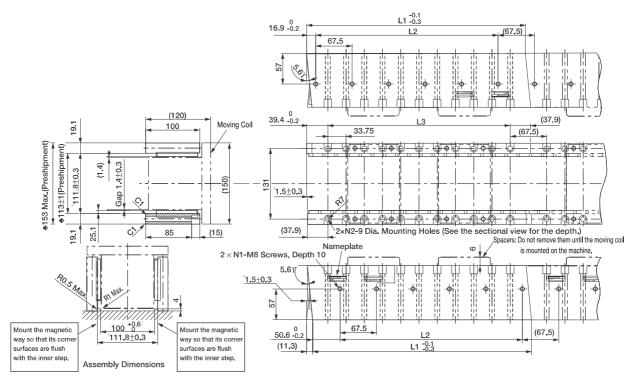
Phase V

Phase W


Ground

The Mating Connector

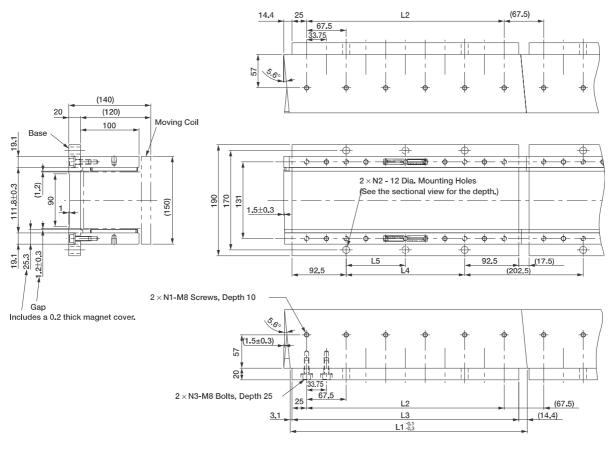
L-shaped plug type : MS3108B22-22S Straight plug type : MS3106B22-22S Cable clamp type : MS3057-12A


Hall Sensor Output Signals

When the moving coil moves in the direction indicated by the arrow in the figure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the figure below.

Moving Coil SGLTW		L2	L3	N	Approx. Mass kg
80□400E	395	360(60×6)	(15)	14	24
80□600E	B□ 575	540(60×9)	(15)	20	35

Magnetic Way : SGLTM-80□□□A□

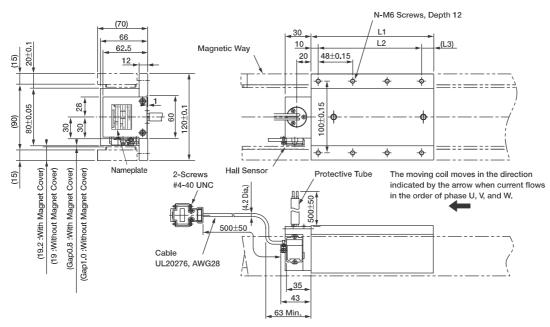

Notes: 1 Two magnetic ways for both ends of moving coil make one set. Spacers are mounted on magnetic ways for safety during transportation. Do not remove the spacers until the moving coil is mounted on a machine.

- 2 If you have a pacemaker or any other electronic medical device, do not go near the magnetic way of the linear servomotor.
- 3 Two magnetic ways in a set can be connected to each other.
- 4 The dimensions marked with an * are the dimensions between the magnetic ways. Be sure to follow exactly the dimensions specified in the figure above. Mount magnetic ways as shown in Assembly Dimensions. The values with a * are the dimensions at preshipment.
- 5 Use socket headed screws of strength class 10.9 minimum for magnetic way mounting screws. Do not use stainless steel screws.

Magnetic Way Model SGLTM-	L1 =0.1	L2	L3	N1	N2	Approx. Mass kg
80405A	405	337.5(67.5×5)	337.5(33.75×10)	6	11	14
80675A	675	607.5(67.5×9)	607.5(33.75×18)	10	19	24
80945A□	945	877.5(67.5×13)	887.5(33.75×26)	14	27	34

Linear Servomotors

Magnetic Way with Base: SGLTM-80□□□AY


Notes: 1 If you have a pacemaker or any other electronic medical device, do not go near the magnetic way of the linear servomotor.

2 Two magnetic ways in a set can be connected to each other.

3 The characteristics of the magnetic way with base are the same as of the magnetic way without base (SGLTM-80 ——A).

Magnetic Way Model SGLTM-	L1	L2	L3	L4	L5	N1	N2	N3	Approx. Mass kg
80405AY	405	337.5	387.5	202.5	202.5	6	2	11	18
80675AY	675	607.5	657.5	472.5	236.25	10	3	19	31
80945AY	945	877.5	927.5	742.5	247.5	14	4	27	43

Moving Coil: SGLTW-35A□□□H□ (Loose Lead Wires without Connectors)

Hall Sensor Connector Specifications

Pin Connector: 17JE-23090-02 (D8C) by DDK Ltd.

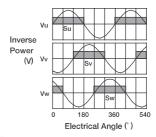
17L-002C1

The Mating Connector Socket Connector: 17JE-13090-02 (D8C) Stud: 17L-002C or

Pin No.	Signal
1	+5VDC
2	Phase U
3	Phase V
4	Phase W
5	0V
6	Not used
7	Not used
8	Not used
9	Not used

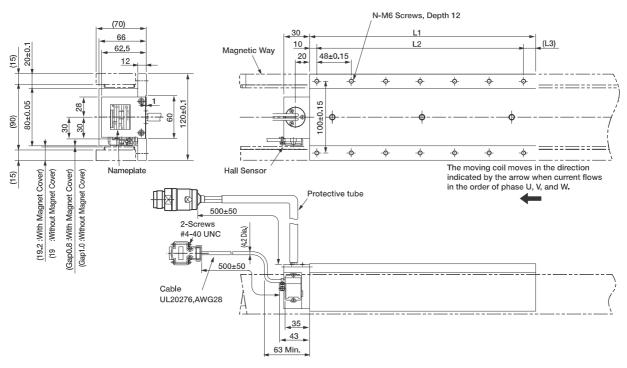
Lead Specifications of Moving Coil

. If this cable is bent repetitively, the cable will disconnect.



(View from Top of Moving Coil)

Name	Color	Code	Wire Size	
Phase U		U		
Phase V	Black V		2 mm²	
Phase W		W	1	
Ground	Green	_	2 mm ²	


Hall Sensor Output Signals

When the moving coil moves in the direction indicated by the arrow in the figure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the figure below.

Moving Coil Model SGLTW-	Lí	L2	(L3)	N	Approx. Mass kg
35A170H□	170	144 (48×3)	(16)	8	4.7
35A320H□	315	288 (48×6)	(17)	14	8.8

● Moving Coil: SGLTW-35D □ □ H □ D (With a connector by Interconnectron GmbH)

Hall Sensor Connector Specifications

Pin Connector: 17JE-23090-02 (D8C) by DDK Ltd.

The Mating Connector

Socket Connector: 17JE-13090-02 (D8C) Stud: 17L-002C or 17L-002C1

Pin No.	Signal
1	+5VDC
2	Phase U
3	Phase V
4	Phase W
5	0V
6	Not used
7	Not used
8	Not used
9	Not used

Linear Servomotor Connector Specifications

Extension : ARRA06AMRPN182 Pin : 021.279.1020 by Interconnectron GmbH

The Mating Connector

Plug : APRA06BFRDN170 Socket : 020.105.1020

Hall Sensor Output Signals

Phase U

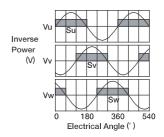
Phase V

Phase W

Not used

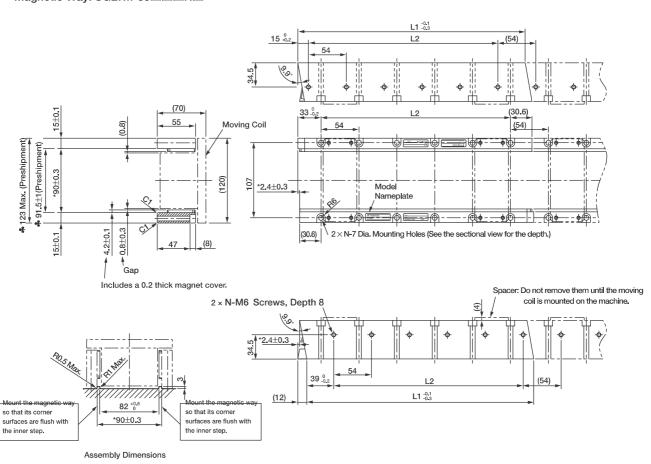
Not used

Ground


2

4

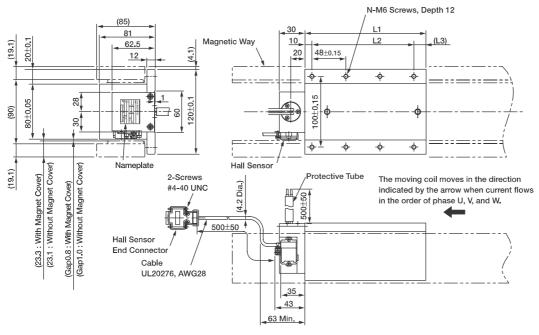
5


6

When the moving coil moves in the direction indicated by the arrow in the figure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, We becomes as shown in the figure below.

Moving Coil Model SGLTW-	L1	L2	(L3)	N	Approx. Mass kg
35D170H□D	170	144(48× 3)	(16)	8	4.7
35D320H□D	315	288(48×6)	(17)	14	8.8

Magnetic Way: SGLTM-35□□□H□


Notes: 1 Two magnetic ways for both ends of moving coil make one set. Spacers are mounted on magnetic ways for safety during transportation. Do not remove the spacers until the moving coil is mounted on a machine.

- 2 If you have a pacemaker or any other electronic medical device, do not go near the magnetic way of the linear servomotor.
- 3 Two magnetic ways in a set can be connected to each other.
- 4 The dimensions marked with an * are the dimensions between the magnetic ways. Be sure to follow exactly the dimensions specified in the figure above. Mount magnetic ways as shown in Assembly Dimensions. The values with a 4 are the dimensions at preshipment.
- 5 Use socket headed screws of strength class 10.9 minimum for magnetic way mounting screws. Do not use stainless steel screws.

Magnetic Way Model SGLTM-	L1 -0.1	L2	N	Approx. Mass kg
35324H□	324	270 (54×5)	6	4.8
35540H□	540	486 (54×9)	10	8
35756H□	756	702 (54×13)	14	11

(6) High-efficiency Type SGLTW-50

Moving Coil: SGLTW-50A□□□H□ (Loose Lead Wires without Connectors)

Hall Sensor Connector Specifications

Pin Connector: 17JE-23090-02 (D8C) by DDK Ltd.

The Mating Connector

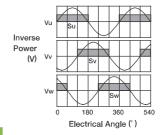
Socket Connector:
17JE-13090-02 (D8C)

Stud: 17L-002C or
17L-002C1

Pin No.	Signal
1	+5VDC
2	Phase U
3	Phase V
4	Phase W
5	0V
6	Not used
7	Not used
8	Not used
9	Not used

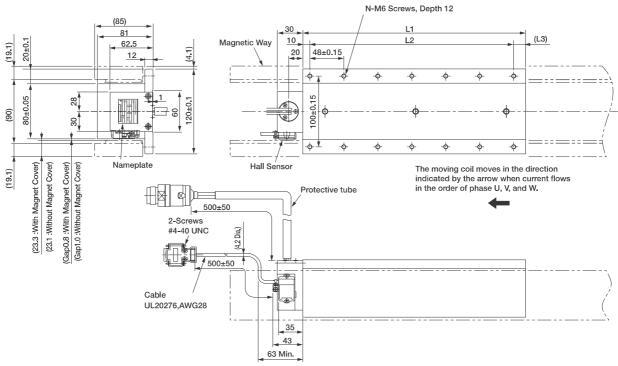
Lead Specifications of Moving Coil

 If this cable is bent repetitively, the cable will disconnect.



(View from Top of Moving Coil)

Name	Color	Code	Wire Size
Phase U		U	
Phase V	Black	V	2 mm ²
Phase W		W	
Ground	Green	_	2 mm²


Hall Sensor Output Signals

When the moving coil moves in the direction indicated by the arrow in the figure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the figure below.

Moving Coil Model SGLTW-	L1	L2	(L3)	N	Approx. Mass kg
50A170H□	170	144 (48×3)	(16)	8	6
50A320H□	315	288 (48×6)	(17)	14	11

● Moving Coil: SGLTW-50D ☐ ☐ H ☐ D (With a connector by Interconnectron GmbH)

Hall Sensor Connector Specifications

Pin Connector: 17JE-23090-02 (D8C) by DDK Ltd.

The Mating Connector

Socket Connector: 17JE-13090-02 (D8C) Stud: 17L-002C or 17L-002C1

Pin No.	Signal
1	+5VDC
2	Phase U
3	Phase V
4	Phase W
5	0V
6	Not used
7	Not used
8	Not used
9	Not used

Linear Servomotor Connector Specifications

Extension : ARRA06AMRPN182 Pin : 021.279.1020 by Interconnectron GmbH

The Mating Connector

Plug : APRA06BFRDN170 Socket : 020.105.1020

Hall Sensor Output Signals

Phase U

Phase V

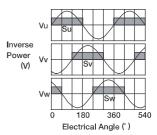
Phase W

Not used

Not used

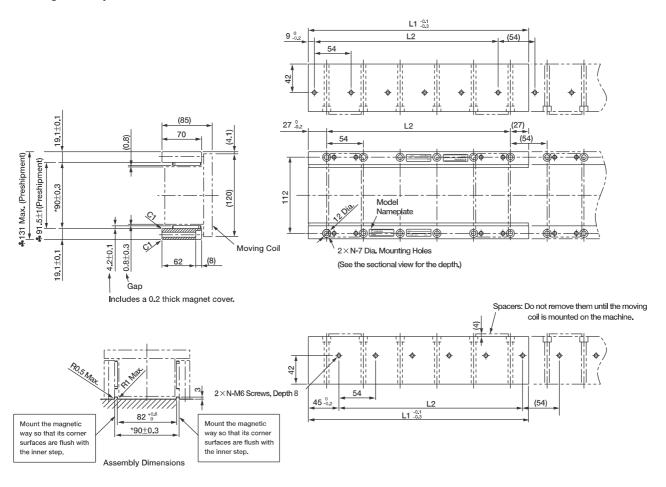
Ground

2

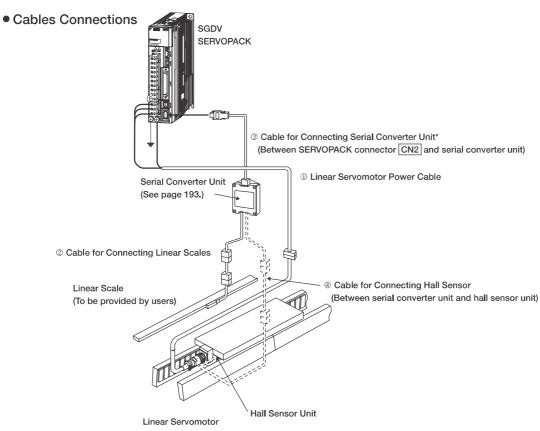

4

5

6


(

When the moving coil moves in the direction indicated by the arrow in the figure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the figure below.


Moving Coil Model SGLTW-	L1	L2	(L3)	N	Approx. Mass kg
50D170H□D	170	144(48×3)	(16)	8	6
50D320H□D	315	288(48×6)	(17)	14	11

Magnetic Way: SGLTM-50□□□H□

- Notes: 1 Two magnetic ways for both ends of moving coil make one set. Spacers are mounted on magnetic ways for safety during transportation. Do not remove the spacers until the moving coil is mounted on a machine.
 - 2 If you have a pacemaker or any other electronic medical device, do not go near the magnetic way of the linear servomotor.
 - 3 Two magnetic ways in a set can be connected to each other.
 - 4 The dimensions marked with an * are the dimensions between the magnetic ways. Be sure to follow exactly the dimensions specified in the figure above. Mount magnetic ways as shown in Assembly Dimensions. The values with a * are the dimensions at preshipment.
 - 5 Use socket headed screws of strength class 10.9 minimum for magnetic way mounting screws. Do not use stainless steel screws.

Magnetic Way Model SGLTM-	L1 -0.1	L2	N	Approx. Mass kg
50324H□	324	270 (54×5)	6	8
50540H□	540	486 (54×9)	10	13
50756H□	756	702 (54×13)	14	18

^{*:} A serial converter unit can be connected directly to an absolute linear scale.

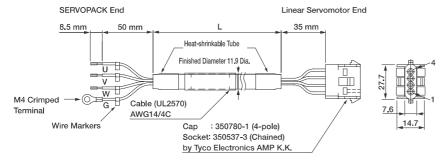
Cables

Name	Applicable Linear Servomotor Model	Length	Order No.	Specifications	Details
		1 m	JZSP-CLN21-01-E		
		3 m	JZSP-CLN21-03-E	SERVOPACK End Linear Servomotor End	
	SGLTW	5 m	JZSP-CLN21-05-E		(4)
	-20A, -35A	10 m	JZSP-CLN21-10-E		(1)
	-55AA	15 m	JZSP-CLN21-15-E	*1	
		20 m	JZSP-CLN21-20-E		
		1 m	JZSP-CLN39-01-E		
		3 m	JZSP-CLN39-03-E	SERVOPACK End Linear Servomotor End	
	SGLTW -40 B, -80 B	5 m	JZSP-CLN39-05-E		(2)
		10 m	JZSP-CLN39-10-E		(2)
1		15 m	JZSP-CLN39-15-E	*2	
Linear Servomotor		20 m	JZSP-CLN39-20-E		
Power Cables		3 m	DP9325254-03G	SERVOPACK End Linear Servomotor End	
	001711	5 m	DP9325254-05G		
	SGLTW 	10 m	DP9325254-10G		(3)
		15 m	DP9325254-15G		
		20 m	DP9325254-20G	*3	
		1 m	JZSP-CMM20D15-01G		
	201711	3 m	JZSP-CMM20D15-03G	SERVOPACK End Linear Servomotor End	
	SGLTW -35D□□□H□D,	5 m	JZSP-CMM20D15-05G	SERVOTAGN EIIG Lillear Servomotor End	(4)
	-35D HD,	10 m	JZSP-CMM20D15-10G		(4)
		15 m	JZSP-CMM20D15-15G	*3	
		20 m	JZSP-CMM20D15-20G	3	

^{*1:} Connector by Tyco Electronics AMP K.K.

Note: The digit "#" of the order number represents the design revision.

^{*2:} MS connector *3: Connector by Interconnectron GmbH

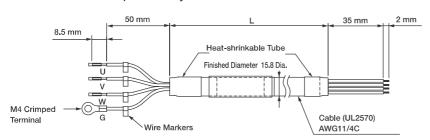

Selecting Cables

Name	Applicable Linear Servomotor Model	Length	Order No.	Specifications	Details
		1 m	JZSP-CLL00-01-E-G#	Serial Converter Unit End Linear Scale End	
2		3 m	JZSP-CLL00-03-E-G#	cine a scale end	
Cables for Connecting	All models	5 m	JZSP-CLL00-05-E-G#		(5)
Linear Scales*		10 m	JZSP-CLL00-10-E-G#		
		15 m	JZSP-CLL00-15-E-G#		
		1 m	JZSP-CLP70-01-E-G#	Serial Converter	
3		3 m	JZSP-CLP70-03-E-G#	SERVOPACK End Unit End	
	All models	5 m	JZSP-CLP70-05-E-G#		(C)
Cables for Connecting Serial Converter Units	All models	10 m	JZSP-CLP70-10-E-G#		(6)
Serial Converter Units		15 m	JZSP-CLP70-15-E-G#		
		20 m	JZSP-CLP70-20-E-G#		
		1 m	JZSP-CLL10-01-E-G#	Serial Converter Hall Sensor Unit End Unit End	
4		3 m	JZSP-CLL10-03-E-G#		
Cables for Connecting Hall	All models	5 m	JZSP-CLL10-05-E-G#		(7)
Sensors		10 m	JZSP-CLL10-10-E-G#		
		15 m	JZSP-CLL10-15-E-G#		

^{*:} When using serial converter unit JZDP-G00 __- __ __ __- E, the maximum cable length is 3 m.

Note: The digit "#" of the order number represents the design revision.

(1) Linear Servomotor Power Cables: JZSP-CLN21- ____-E



Wiring Specifications

SERVOPACK-end Leads			motor-end ector
Signal		Signal	Pin No.
Phase U		Phase U	1
Phase V		Phase V	2
Phase W		Phase W	3
FG		FG	4
	Phase V Phase W	Phase V Phase W	Phase U Phase V Phase W Phase W

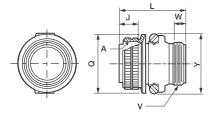
(2) Linear Servomotor Power Cables: JZSP-CLN39- ____-E

A connector is not provided on the linear-servomotor end of the power cable (JZSP-CLN39- -E). This connector is provided by the customer.

Wiring Specifications

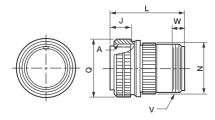
SERVOPACK-6	l	inear Servo. Conn		
Wire Color	Signal		Signal	Pin No.
Black 1	Phase U		Phase U	1
Black 2	Phase V		Phase V	2
Black 3	Phase W		Phase W	3
Green/yellow	FG		FG	4

● JZSP-CLN39 Cable Connectors



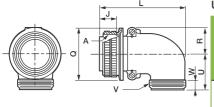
Applicable Linear		Attached Connector	PI	Cable Clamp	
Servomotor	Model	Attached Connector	Straight	Straight L-shaped	Cable Glamp
COLTW 40		MC0100A00 00D	MS3106B22-22S	MC0100B00 000	MC0057 10A
SGLTW-40, -80		MS3102A22 - 22P	or MS3106A22-22A	MS3108B22-22S	MS3057-12A

(a) MS3106B: Straight Plug with Front-shell and Back-shell Separated



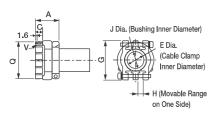
Units: mm

Shel l Size	Joint Screw A	Joint Length J±0.12	Max. Overa ll Length L	Outer Diameter of Nut Q+0,38	Cable Clamp Mounting Screw V	Min. Effective Screw Length W	Max. Width Y
22	1 3/8 -18UNEF	18.26	55.57	40.48	1 3/16 -18UNEF	9.53	50


(b) MS3106A: Straight Plug with Solid Shell

Units: mm

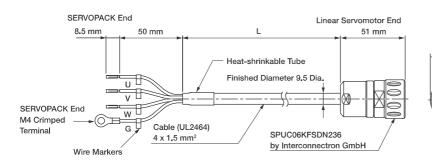
Shell Size	Joint Screw A	Joint Length J±0.12	Overall Length L±0.5	Outer Diameter of Nut Q+0/-0.38	Outer Diameter N±0.5	Cable Clamp Mounting Screw V	Min. Effective Screw Length W
22	1 3/8 -18UNEF	18.26	54	40.48	34.99	1 3/16- 18UNEF	9.53


(c) MS3108B: L-shaped Plug with Front-shell and Back-shell Separated

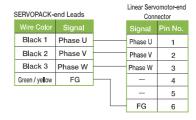
Units: mm

Shell Size	Joint Screw A	Joint Length J±0.12	Max. Overall Length L	R ±0.5	U ±0.5	Outer Diameter of Nut Q+0.38	Cable Clamp Mounting Screw V	Min. Effective Screw Length W
22	1 3/8 -18UNEF	18.26	76.98	24.1	33.3	40.48	1 3/16 -18UNEF	9.53

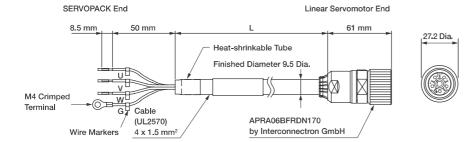
(d) MS3057-12A: Cable Clamp with Rubber Bushing

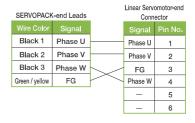

Units: mm

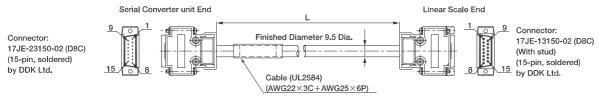
Applicable Shell Size	Overall Length A±0.7	Effective Screw Length C	E	G±0.7	н	J	Mounting Screw V	Outer Diameter Q±0.7	Rubber Bushing Type
20,22	23.8	10.3	19.0	37.3	4.0	15.9	1 3/16 -18UNEF	35.0	AN3420 -12


28 Dia.

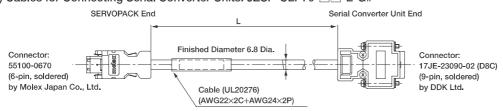
Selecting Cables


(3) Linear Servomotor Power Cables: DP9325254- G

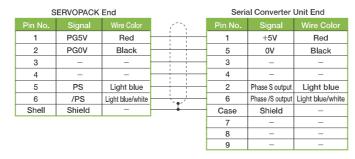

Wiring Specifications

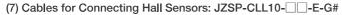

(4) Linear Servomotor Power Cables: JZSP-CMM20D15- G

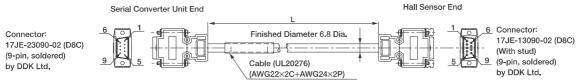
• Wiring Specifications



(5) Cables for Connecting Linear Scales: JZSP-CLL00- -E-G#




Wiring Specifications


Serial Conve	ter Unit End		Linear S	cale End
Pin No.	Signal	()	Pin No.	Signal
1	/Cos (V1-)	- 	1	/Cos (V1-)
2	/Sin(V2-)	- 	2	/Sin (V2-)
3	Ref (V0+)		3	Ref (V0+)
4	+5V	+ + +	4	+5V
5	5Vs		5	5Vs
6	BID	1 1	6	BID
7	Vx		7	Vx
8	Vq		8	Vq
9	Cos (V1+)		9	Cos (V1+)
10	Sin (V2+)		10	Sin (V2+)
11	/Ref (V0+)	- 	11	/Ref (V0-)
12	0V	1 1	12	0V
13	0Vs		13	0Vs
14	DIR		14	DIR
15	Inner	\ \p-/	15	Inner
Case	Shield	•	Case	Shield

Wiring Specifications

• Wiring Specifications

Serial Co	nverter Unit End		Hall Sensor End		
Pin No.	Signal	77	Pin No.	Signal	
1	+5V	1 1	1	+5V	
2	Phase U input	- 	2	Phase U input	
3	Phase V input	1 1	3	Phase V input	
4	Phase W input		4	Phase W input	
5	0V	-	5	0V	
6	_		6	_	
7	_		7	_	
8	_	-	8	-	
9	_		9	_	
Case	Shield	-	Case	Shield	